"Full fathom five thy father lies
of his bones are coral made
those are pearls that were his eyes
nothing of him that doth fade
but doth suffer a sea-change
into something rich and strange."

William Shakespeare
THE TEMPEST (Act 1, SC II).
Biocoral® is the only natural wholly mineral bone graft substitute having a highly porous architecture, which is formed from naturally occurring aragonite crystal with three-dimensional interconnectivity allowing for optimum formation of new bone.

Biocoral®:

- Natural Calcium Carbonate (CaCO₃),
- 3 dimensional randomly interconnected pore,
- Pore size: 150µm,
- Porosity: 50% allowing an ideal newly bone formation.
THE PHYSIOLOGY OF BONE GRAFTING

The biology of bone grafts and their substitutes is appreciated from an understanding of the bone formation processes of Osteogenesis, Osteoinduction and Osteoconduction.

Osteogenesis: The cellular elements within a donor graft, which survive transplantation and synthesize new bone at the recipient site.

Osteoinduction: New bone is formed through the active recruitment of host mesenchymal stem cells from the surrounding tissue, which differentiate into bone-forming osteoblasts. This process is facilitated by the presence of growth factors within the graft, principally Bone Morphogenetic Proteins (BMP).

Osteoconduction: The facilitation of blood-vessel incursion and new-bone formation into a defined passive trellis structure.

All bone graft and bone-graft-substitute materials can be described through these processes.

CHARACTERISTICS OF BIOCORAL®

Biocoral® is a natural bone substitute used since more than 30 years in all surgical, repair and bone regeneration procedures. Biocoral® is available in the form of granules, beads, blocks, and the shaped prostheses. The Biocoral® is the only natural wholly mineral resorbable bone substitute composed of Calcium Carbonate (>98%).

Biocoral® biocompatibility, together with its osteoconductive and osteophilic properties, induces specific biological activity in the recipient bone, similar to the physiological natural bone metabolism. This activity leads to graduate resorption of Biocoral® by osteoclasts and its replacement by osteoblasts in newly formed bone.

The porosity architecture of Biocoral® is in the form of aragonite crystalline. The regular structures of pores, their volume, their size and the thickness of their walls are the special characteristics of Biocoral®. The open porosity of Biocoral®, allows the blood cells and bone marrow cells (blood, anions, cations, etc...) to spread and infiltrate in its core which speed up the bone ingrowths. Biocoral® present the remarkable mechanical resistance qualities associated to its porosity (50% and 20%) similar to those of the cancellous and cortical bone respectively.

Section of a human femural cortex
Section of Biocoral®
GOOD REASONS TO USE BIOCORAL®

Biocompatible
Biocoral® is perfectly tolerated by the human body with no risk of contamination and is compatible with the structural requirements of bone growth.

Bioresorbable
Biocoral® has excellent bone integration with total resorption between 3 to 9 months.

Biocoral® because of its mineral and architectural characteristics (Aragonite Crystal and Porosity), once placed is bony sites is quickly impregnated with autogenous blood or bone marrow, with a proved calcification from the day 9th.

Osteoconductor
Biocoral® has an ideal porosity which allows a quick invasion of bone marrow and integration of newly formed bone.

Re-Initiates Bone Mineralization Process
Biocoral® is used as an active ingredient for reinitiating the process of bone remineralization.

Replaced by Newly Formed Bone
Biocoral® is quickly vascularized and progressively resorbed by osteoclast cells, which is then replaced by osteoblast cells in order to conduct newly formed bone identical to the recipient bone.

No Risk of Viral Transfer & Contamination
Biocoral® follows strict quality control procedures which are performed at each stage of manufacturing process and guarantees its compliance with high quality standards and offers surgeons a truly trustworthy biomaterial.

Easy to Use
Biocoral® is available in a variety of shapes and sizes. It can easily be used and applied to the surgical site once infiltrated by autogenous blood or bone marrow.

Biocoral® is available in different forms: granules, beads, blocks and shaped prostheses.

Avoids taking autologous bone graft & Reduce Cost
Biocoral®'s use avoids taking autologous bone graft (which can lead to risks such as postoperative infection, bleeding, pain) and prevent unwanted aesthetic disorders at donor site. The take of autologous bone graft increases the time of the surgical process and the costs related into. (the surgical act and miscellaneous costs).

Biocoral® is the best alternative to the autologous grafts and also contributes to decrease and minimize patient’s hospitalization and its health care costs.
CHEMICAL COMPOSITION OF BIOCORAL®

Following the studies of Pr Le Petitcorps in 2006 at Hospital University Center of Bordeaux, L'ICMGB-ENSCPB (one of the CNRS laboratories (UPR 9048)), Biocoral®’s chemical composition is confirmed being wholly mineral as described below:

Several components are present at levels equivalent to those found in mammalian bone, notably trace elements, which play a vital role in the process of mineralization and in the activation of enzymatic reactions in bone cells.

Two trace elements have specifics effects:

- Strontium is involved in the formation and growth of the crystalline component of bone, protects calcification mechanisms and increases mineralization. Furthermore, Strontium levels are higher in the most active bone structure the metaphysis and bone callus.

- Fluorine in proper quantity increases bone formation by direct effects on proliferation of cellular precursors of osteoblasts.
A. Determination of Pore Size

Biocoral® pore size is important as this offers the ideal environment for vascularization and migration of osteoclasts and osteoblasts. It ranges between 20% and 50% depending on the species selected. Acropora (20% of porosity) is very close to the cortical bone. The Porites (50% of porosity) is very close to the cancellous bone. That porosity allows the surgeon to choose Biocoral®, according to the clinical indication. However, those specifications do not constitute a rigid standard. Natural Calcium Carbonates with different porosities can be used according to the operating procedure.

Biocoral® pore size ranges between 150 to 500 microns, depending on the species, selected according to clinical indications. It has previously been shown that these sizes are optimal for occupation by fluids and bone marrow cells in order to complete mineralized newly formed bone. For indications where dense material is necessary, for example for strong mechanical compression strains, the natural microporous Calcium Carbonate (Acropora) can be used.

Bone cells (bone marrow and blood of the recipient bone) can freely invade the open porous structure of Biocoral® deep in its core. This cellular invasion determines the first phase of the bone restoration process characterized by the development of a neo-vascularization. Some corals (Porites in particular) have the architecture similar with the cancellous bone.
B. Overall porosity

Biocoral® has a maximum porosity of 50% for allowing the ideal bone ingrowths. To induce the bone regeneration process overall porosity is one of the important key factors and its high porosity enhances the osteoconductivity.

<table>
<thead>
<tr>
<th>MECHANICAL CHARACTERISTICS</th>
<th>BIOCORAL®</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DENSE</td>
</tr>
<tr>
<td>Breaking deformation</td>
<td>0.47 ± 0.03 %</td>
</tr>
<tr>
<td>Breaking stress in compression in MPa</td>
<td>395 ± 29 330 % that of fresh cortical bone 50 % that of titanium alloy</td>
</tr>
<tr>
<td>Young’s modulus (modulus of elasticity) in GPa</td>
<td>101.6 ± 3.7</td>
</tr>
</tbody>
</table>

(Orthopedics Researches Laboratory, U.A. C.N.R.S., 1161, Expert evaluation report, INOTEB, 1987)

C. Three-Dimensional interconnected pore for ideal Bony Growth

Biocoral®’s architecture is entirely porous and is defined by the total volume three-dimensional randomly interconnected to allow bone formation throughout the entire implant. (Photos below)
Biocoral® is a natural bone substitute used since more than 30 years in all surgical, repair and bone regeneration procedures. Biocoral® is the only biocompatible and bioresorbable calcium salt used as an active ingredient for local treatment of diseases associated with demineralization or mineralization defects of bone, with the aim of reinitiating the bone remineralization process (Patented Application).

Orthopedic surgery:
- Substitution of cancellous bone graft,
- Insufficiency of autogenous bone graft,
- Filler of metaphyseal bone graft (osteoporotic disease),
- Femoral neck fracture associated with a cancellous bone demineralization,
- Demineralized bone cavity filling (bone-cyst, chondroma, acetabular cavity),
- Upper and lower limb fractures associated with bone demineralization,
- Non-union atrophic bone fractures,

Cranio-Maxillo-Facial surgery:
- Maxillo reconstructive and plastic surgery,
- Plastic and facial reconstructive surgery of Malar,
- Nasal sulcus filling,
- Plastic and reconstructive surgery of Orbit (post-traumatic, post-cancerous),

Oral surgery:
- Filling, reconstruction of bone defects and regeneration of bone for: Periodontal, implant and endodontic surgery,
- Filling, reconstruction of bone defects and regeneration of bone for: Pre prosthetic surgery and implant procedure: Filling after tooth extraction,

Particular Applications
- Sinus lift augmentation,
- Lateral sinus lift augmentation,
- Filling of voluminous cystics cavities,
- Filling and augmentation of lateral sinus.

Biocoral® is a bone graft substitute which provides an osteoconductive matrix and it is a very useful for adding volume to autogenous graft to obtain osteoinduction. It is recommended to impregnate Biocoral® with bone marrow or blood, particularly when it is necessary to obtain immediate cohesion between Biocoral® granules or beads. Once blood is mixed with Biocoral®, the existence of fibrin in blood makes a composite easier to fill in the recipient bone.
HISTOLOGIC ANALYSIS OF FUSION MASS

A. From Biocoral® to Newly Formed Bone

Phase 1: Invasion by blood cells and extravasated bone marrow.

Phase 2: Vascularization (v: vessels).

Phase 3: Resorption of Biocoral® by osteoclasts (oc: osteoclast).

Phase 4: Bone neoformation with osteoblastic (ob: osteoblast) apposition and concomitant resorption.

Phase 5: Remodeling of neoformed tissue to produce the architecture of the recipient bone.

B. New bone formation associated with the bone’s physiological modification

We can notice the physiological bony modification with an osteoblastic phase and an osteoclastic phase.
RADIOLOGICAL RESULTS OF FEMORAL LENGTHENING

An eight year old child had a right leg that was more than five centimeters shorter than the left leg. Such a discrepancy normally calls for an elongation of the malformed leg. A Biocoral® graft was implanted. During the following years, Biocoral® was perfectly integrated into the site and there was a successful reconstruction of the femoral shaft.

Post Operative

One Year Later

Three Years Later
REFERENCES BIBLIOGRAPHICS

✓ FUNDAMENTAL RESEARCH

✓ CLINICAL RESEARCH - ORTHOPAEDICS AND SPINE SURGERY

✓ CLINICAL RESEARCH - MAXILLOFACIAL SURGERY

✓ CLINICAL RESEARCH - ENT SURGERY

✓ CLINICAL RESEARCH - ORAL SURGERY
REFERENCES BIBLIOGRAPHICS

FUNDAMENTAL RESEARCH

ARNAUD E., MORIEUX C., WYBIE M., de VERNEJOUL M.C. (Hôpital Necker, Paris, FRANCE)
Potentiation of Transforming Growth Factor (TGF-β1) by natural Coral and Fibrin in a Rabbit Cranioplasty Model.

ARNAUD E., MORIEUX C., WYBIE M., de VERNEJOUL M.C.
(Hôpital Necker, Paris, FRANCE)
Osteogenèse induite par l'association de facteur de croissance, de colle fibrinogénique et de carbonate de calcium.

DAMIEN C.J., RICCI J.L., CHRISTEL P., ALEXANDER H., PATAT J.L.
(Intermedics Orthopaedics, Denver, USA / LRO, Paris, FRANCE / Hospital for joint disease, New-York, USA)
Calcified Tissue International 1994; 55: 151-158

VOIGT C., MERLE C., MULLER-MAI C., GROSS U. (Free University of Berlin, GERMANY)
Substitution of natural coral by cortical bone and bone marrow in the rat femur (Part I).
Journal of Materials Science Materials in Medicine, n° 3, 1992, p.222

DAMIEN C.J., CHRISTEL P., BENEDICT J., PATAT J.L., GUILLEMIN G.(LRO,FRANCE / Intermedics Orthopaedics, Denver, USA)
A composite of natural coral, collagen, Bone Protein and basic Fibroblast Growth Factor tested in a rat subcutaneous model.
Annales Chirurgiae et Gynaecologiae 1993; 82:117-128

GRYNSZPAN R.I., SCHNABL O., LACROIX J.N., KUHLMANN J.N., DERER P.
(CNRS, Paris, FRANCE)

IRIGARAY J.L., OUDADESSE H., BLONDIAUX G., COLLANGETTES D.
(CNRS de Clermont-Ferrand et Université Blaise Pascal, Aubière, FRANCE)
Kinetics of the diffusion of some elements evaluated by neutron activation in a coral implanted in vivo.

GUILLEMIN G., PATAT J-L. (LRO, Faculté de médecine Lariboisière, Paris, FRANCE)
The use of coral as a bone graft substitute
J. Biomedical Materials research 1987; 21: 557-567

IRIGARAY J.L., OUDADESSE H., ELFADL H., SAUVAGE T.
(CNRS de Clermont-Ferrand et Université Blaise Pascal, Aubière, FRANCE)
Etude de la cristallisation des éléments traces par radioactivité nucléaire dans un corail implanté.

IRIGARAY J.L., OUDADESSE H., ELFADL H., SAUVAGE T., THOMAS G., VERNAY A.M.
(CNRS de Clermont-Ferrand et Université Blaise Pascal, Aubière, FRANCE)
Effet de la température sur la structure cristalline d'un biocorail.

IRIGARAY J.L., SAUVAGE T., OUDADESSE H., EL FADEL H., DESCHAMPS N., LEFAIVRE J., TERVERS S., TIXER H.
(CNRS de Clermont-Ferrand et Université Blaise Pascal, Aubière, FRANCE)
Study of the mineralization of coral implanted in vivo by radioactive tracers.

BOU-ABBOUD N., SAWAF M.H., OUIHAYOUN J.P. (Université Paris VII-Garancière, FRANCE)
Osteoconduction - ostéoinduction : l'apport des différents matériaux de comblement.

ARNAUD E., DE VERNEJOUL M.C., MOLINA F. (Hôpital Necker, Paris, FRANCE)
Potentialization of Bone Growth Factor (TGF-β1) with Natural Coral Skeleton and Fibrin Glue. Experimental and preliminary clinical results.

OKUGUSHI H., OKUMURA N., YOSHIIKAWA T., INOUE K., SENPUKU N., TAMAI S. (Nara Medical University, JAPAN)
Bone formation process in porous calcium carbonate and hydroxyapatite
Journal of Biomedical Materials Research, 1992; 26: 885-895

OUIHAYOUN J.P, ISSAHIKIAN S., PATAT J.L., SHABANA A.H.M., GUILLEMIN G. (Université Paris VII-Garancière, FRANCE)
Histological Evaluation of natural Coral Skeleton as a Grafting Material in miniature swine mandible.

SAUVAGE T. (Université de Clermond II, FRANCE)
Etude par des méthodes nucléaires d'analyse des transformations physico-chimiques du corail implanté in vivo.
Thèse de doctorat d'université, spécialité physique nucléaire, université Clermond II (France), 1992.

RUYT A.
Recherches sur les oligo-éléments : importance du Sr,Zn.

ROSENTHAL H.L. – COCHRAN O.A.
Strontium content of mammalian bone – Diet and excreta.

GROSS U., MULLER MAI, VOIGT C. (Free University of Berlin, GERMANY)
Comparative Morphology of the Bone Inter-face with Glass Ceramics, Hydroxyapatite and natural Coral

LOGEART – AVRAMOGLOU D., ANAGNOSTOUC F., BIZIOS R., PETITE H.
(LRO, faculté de médecine Lariboisière saint- Louis, université Denis Diderot)
Engineering bone: challenges and obstacles

KANIA RE, MEUNIER A, HAMADOUCHE M, SEDEL L, PETITE H.

CLINICAL RESEARCH - ORTHOPAEDICS AND SPINE SURGERY

E. SOFFER1*, J.P. OUHAYOUN2, A. MEUNIER1, F. ANAGNOSTOU2 Effects of Autologous Platelet Lysates on Ceramic Particle Resorption and New Bone Formation in Critical Defects: The Role of Anatomical Sites
1 Laboratoire Biomateériaux et Biomécanique Ostéo-articulaires, UMR-AC-CNRS 7052, Paris, France
2 Département de Parodontologie, Faculté de Chirurgie Dentaire Université Paris 7 et Laboratoire Biomateériaux et Biomécanique Ostéo-articulaire, U.M.R.-C.N.R.S. 7052, Paris, France Received 25 March 2005; revised 8 September 2005; accepted 26 October 2005. Published online 16 March 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jbm.30516

W. BENSaida1*, J.T. TRIFFITT1, C. BLANCHAT1, K. OUDINA1, L. SEDEL1, H. PETITE2 A biodegradable fibrin scaffold for mesenchymal stem cell transplantation
1 Laboratoire de Recherches Orthopédiques, UMR-CNRS 7052, Faculté de Médecine Lariboisière Saint-Louis, Université D. Diderot, 10 avenue de Verdun, Paris 75010, France
2 Botnar Research Laboratory, Nuffield Department of Orthopaedic Surgery, University of Oxford, UK Received 5 September 2002; accepted 11 December 2002

W. BENSaida1, K. OUDINA, V. VIATEAU, E. POTIER, V. BOUSSON, C. BLANCHAT, L. SEDEL1, . GUILLEMIN, and H. PETITE, De Novo Reconstruction of Functional Bone by Tissue Engineering in the Metatarsal Sheep Model TISSUE ENGINEERING, Volume 11, Number 5/6, 2005 © Mary Ann Liebert, Inc.

D. LOGEART-AVRAMAGLOU1, F. ANAGNOSTOU2, R. BIZIQH, H. PETITE1 Engineering bone: challenges and obstacles Laboratoire de Recherches Orthopédiques, Faculté de Médecine Lariboisière Saint-Louis, Université Denis Diderot, Paris, France Received: December 22, 2004; Accepted: January 25, 2005

VIATEAU V1, GUILLEMIN G2, BOUSSON V2, OUDINA K2, HANNOUCHE D2, SEDEL L2, LOGEART-AVRAMAGLOU D2, PETITE H2.
1 Ecole Nationale Vétérinaire d’Alfort, 7 avenue de Gaulle, 94700 Maisons Alfort, France
2 Laboratoire de Recherches Orthopédiques, Centre Nationale de la Recherche Scientifique-Sciences pour l’Ingénieur, Unité Mixte de Recherche 7052, Faculté de Médecine Lariboisière Saint-Louis, Université Denis Diderot, 10 avenue de Verdun, 75010 Paris, France
Received 12 May 2006; accepted 30 October 2006 Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jor.20352

PETITE H, VIATEAU V, BENSaida W, MEUNIER A, de POLLAK C, BOURGUIGNON M, OUDINA K, SEDEL L and GUILLEMIN G. Tissue-engineered bone regeneration Laboratoire de Recherches Orthopédiques, CNRS UPRES A 7052, Université D. Diderot, Faculté de Médecine Lariboisière Saint-Louis, 10 avenue de Verdun, 75010 Paris, France. *Corresponding author (hpetite@infobiogen.fr). Received 17 February 2000; accepted 19 May 2000

E. ARNAUD1, C. DE POLLAK1, A. MEUNIER1, L. SEDEL1, C. Damienni1, H. PETITE2* Osteogenesis with coral is increased by BMP and BMC in a rat cranioplasty
1 Unité de chirurgie craniotraumatique, Département de neurochirurgie, Hôpital Necker, 75743 Paris cedex 15, France
2 Laboratoire de Recherches Orthopédiques, Université D. Diderot, Paris VII, URA CNRS 1432, 10 ave. de Verdun 75010 Paris, France
Received 30 November 1998; accepted 16 May 1999

ROUX.FX, BRASNU.D, MENARD.M, DEVAUX.B, NOHRA.G, LOTY.B.

CIROTTEAU Y.

CLINICAL RESEARCH - MAXILLOFACIAL SURGERY

ARNAUD E, MOLINA F, MENDICZA M, FUENTE DEL CAMPO A, ORTIZ MONASTERIO F. (Hôpital Necker, Paris, FRANCE)
Substitut osseux avec facteur de croissance. Cas cliniques préliminaires pour les indications crano- et maxillo-faciales.
Ann Chir Plast Esthét 1998;43:n°1:40-50

BOUTAULT F. (Centre Hospitalier Universitaire de Toulouse, FRANCE)
Intérêt des blocs de coral dans les plasties d'augmentation des pommettes. Etude prospective portant sur 23 patients.
Annales de chirurgie plastique, 1997, 42 (3), 216-222

Le plancher orbitaire en coral. Son intérêt en traumatologie.

SOOST F. (University of Berlin (Humbolt), GERMANY)
Biocoral - ein alternativer knochenersatz.
Chirurg 1996; 67: 1193 - 1196

SOOST F. (University of Berlin (Humbolt), GERMANY)
Historischer Überblick der Knochenersatz- und Implantat-materialien in der craniofacialen Chirurgie
OSTELOGIE 1996; 135 - 143

SANDOR G., MARCHAC D. (Hospital of sick children, Toronto, CANADA)
Experience with the use of coral granules as a bone graft substitute in the human cranio-maxillofacial skeleton.
Bulletin de l'Institut Océanographique, Monaco, 1995; 14, 3.

CHEVALIER D., LANCIAUX V. (Hôpital Claude-Huriez, Lille, FRANCE)
Intérêt de l'implant de coral dans le traitement des échecs fonctionnels après laryngectomie subtotale avec crico-hyoido-pexie.

MARCHAC D., SANDOR G. (Hospital Necker, Paris, FRANCE)
Use of coral granules in the craniofacial skeleton.

LOTY B., ROUX F.X., GEORGE B. (Centre Hospitalier Universitaire Cochin, Paris, FRANCE)
Utilisation du coral en chirurgie osseuse

LEVET Y., GUERO S., JOST G. (Hôpital Lariboisière, Paris, FRANCE)
Utilisation du coral en remplacement des greffes osseuses en chirurgie faciale, Quatre ans de recul

SERVERA C., SOUYRIS F., PAYROT C., JAMMET P. (University Hospital Centre Montpellier, FRANCE)
Le coral dans les lésions infra-osseuses, Bilan après 7 ans d'utilisation

SOUYRIS F., PELLEQUER C., PAYROT C., SERVERA C. (University Hospital Centre Montpellier, FRANCE)

VOREAUX P., JOST G., LEVET Y., RICHARD P. (Université Paris VII et Hôpital Lariboisière, Paris, FRANCE)
Utilisation de squelettes de coraux en chirurgie réparatrice de la face et des maxillaires
Le chirurgien dentiste de France 1984; n°265: 59-63

LEVET Y., JOST G. (Hôpital Lariboisière, Paris, FRANCE)
Utilisation de squelette de coraux madréporaires en chirurgie réparatrice

PETITE H.P., SEDEL L, MEUNIER A., DAMIEN C., DE POLLAK, ARNAUD E. (LRO, Université D. Diderot), Biomaterials 16 May 1999
Osteogenesis with coral is increased by BMP and BMC in a rat cranioplasty
BAE Y.C., MOON J.S., NAM S.B.
Comparison of the postoperative outcome in pure medial orbital fracture among three groups: using porous polyethylene or hydroxyapatite through subciliary approach and transnasal endoscopic correction. Ann Plast Surg. 2007 Sep;59(3):287-90.

NAM S.B., BAE Y.C., MOON J.S., KANG Y.S.
Analysis of the postoperative outcome in 405 cases of orbital fracture using 2 synthetic orbital implants. Ann Plast Surg. 2006 Mar; 56(3):263-7
DAGLI A.S., AKALIN Y., BILGILI H., SECKIN S.

CLINICAL RESEARCH - ENT SURGERY

CHEVALIER D., LANCIAUX V., DARRAS J-A., PIQUET J-J.
(Hôpital Claude-Huriez, Lille, FRANCE)

SCHMOLL L., DEBRY Ch., BOULLION F, PATAT J-L., CONRAUX C. (Hôpital Civil, Strasbourg, FRANCE)

OUHAYOUN J.P , (Université Paris VII-Garancière, FRANCE)
Bone grafts and Biomaterials used as bone graft substitutes
Il European Workshop in Periodontics, Switzerland, Quintessenz Verlag, 1996; 313-348

COCHET J.Y . (Paris, FRANCE)
Lésions endoparodontales
Tribune dentaire, Vol 3 n° 11, 1995

CORRENTE G. (University of Turin, ITALIA)

ISSAHAKIAN S. (Paris, FRANCE)
Espacement d'un biomatérialu.

MORA F. OUHAYOUN J.P (Université Paris VII-Garancière, FRANCE)

YUKNA R.A. (Louisiana State University, USA)

BELLIEN P. (FRANCE)
Cas complexe d'une incisive maxillaire
Tribune dentaire 1994, Vol 2, n° 20, 14-21

HIPPOLYTE M.P., FABRE D. (Faculté de Montpellier, Avignon, FRANCE)
Membrane non résorbable et corail.
Tribune dentaire, Vol 2, n°3, Février 1994
LUCAS A., MICHEL J.F. (Faculté des Sciences de Rennes, FRANCE)
Le corail madréporaire utilisé en chirurgie parodontale. Étude ultrastructurale.
Tribune dentaire, Vol 2, n° 3, Mai 1994
BUCCI SABATTINI V., LUCCONI G., GIORDANO A. (University of Varese, ITALIA)
Biomateriale in chirurgia parodontale: il biocoral® nella rigenerazione guidata del parodonto profondo.
J. Nuova Proposta 1991-01
BUCCI SABATTINI V., BARTOLUCCI E.G. (University of Varese, ITALIA)
Il rialzo del pavimento del seno mascellare ad uso implantare: tecnica chirurgica
ZERBIB R., OUHAYOUN J.P., FREYSS G. (Université Paris VII-Garancière, FRANCE)
Apport Osseux et chirurgie implantaire
J. Parodontologie 1991; 10:177-188
LOUISE F., BORGHETTI A. (Faculté de Marseille, FRANCE)
Evaluation clinique de l'implantation d'un corail naturel dans des défauts osseux parodontaux, Résultats à un an
J. Parodontologie 1991; 10:89-76
OUHAYOUN J.P., ETIENNE D. (Université Paris VII-Garancière, FRANCE)
Comblement immédiat des sites d'extraction en omnipratique: utilisation d’un biomatériau résorbable, le corail naturel.
J. L’Information Dentaire 1989; 4: 225-238
NEAU A
Restauration prothétique des incisives maxillaires extraites à la suite d’une parodontite
Stratégie prothétique, avril 2004, vol 4, n°2, p. 129-139
MOLLY L., VANDROMME H., QUIRYNEN M., SCHEPERS E., ADAMS J.L., VAN STEENBERGHE D.
SÁNDOR G.K., KAINULAINEN V.T., QUEIROZ J.O., CARMICHAEL R.P., OIKARINEN K.S.
Natural Calcium Carbonate bone substitute
Indications

Biocoral® is used as bone graft substitute in all surgical, repair and bone regeneration procedures.

Biocoral® is the only biocompatible and bioresorbable calcium salt used as an active ingredient for local treatment of diseases associated with demineralization or mineralization defects of bone, with the aim of reinitiating the process of bone remineralization. (Patented Application)

It is appropriate to read and follow the recommendations described in the leaflet accompanying the medical device Biocoral®.

Advantages

- Natural wholly mineral biomaterial,
- Easy to use and easy handling,
- No risk of viral transfer & contamination,
- Quick infiltration by autogenous blood or bone marrow once placed in bony sites,
- Variety of shapes and sizes for many fields.

Biocoral® has remarkable physical, chemical and architectural properties similar to those of the human bone.

General Data

Biocoral® is a medical device classified in the class III according to the European regulation. Biocoral® is in complete conformities with the European and International norms. Biocoral® although marketed since the end of the years 80, was the first bone substitute registered in France with TIPS (Tarifs Interministériels des Prestation Sanitaires). Nevertheless within the framework of its registration, Biocoral® has been received approving opinion of Microbiological Committee of Health on July 05, 1995 referenced under the number 9600201B01.

Biocoral® obtained the authorization of marketing in the European countries market "EC label" on December 30, 1996.

The manufacture of Biocoral® comply with the regulation inforc.

Biocoral®’s radiosterilization for pharmaceutical use is obtained by β. Rays with the delivery dose between 25 and 50 KGrays. The shelf life of Biocoral® is five years from the date of sterilization.